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Abstract: In any stock market, the stock prices are generally volatile over
time. While stock prices either increase or decrease gradually in short periods,
the fluctuations are wide and more persistent over long periods. This paper
analyses the effects of such short-period and long-period volatility on stock
prices. Using error variance i.e. volatility in residuals, specifically volatility
clustering, the future volatility in stock prices is forecasted. Using data on the
stock prices of TATA Steel Limited, a listed company in the NSE, for the period
January 1, 2021- December 31, 2023, the effects of short-period and long-period
stock price fluctuations on daily stock prices and volatility are predicted for
the next 69 days, from January 1 to April 13, 2024. The stock prices are
predicted first by the ARIMA model, and then the future stock price volatility
is predicted by applying the GARCH and EGARCH models on the resultant
residuals. The EGARCH fitting shows that the long-period fluctuations have
a significant effect on the future stock price volatility relative to the GARCH
fitting. The comparison of EGARCH forecasts with the actual stock price
fluctuations from January 1-April 13, 2024, shows that the long-period stock
price volatility is more reliant than the short-period volatility in forecasting
future stock price volatility as well as the stock prices.
Keywords: Stock price volatility, heteroscedasticity, error variance, volatility
clustering, asymmetry, leverage, ARIMA, GARCH, EGARCH, forecasting.

INTRODUCTION

The prices of shares in all stock markets fluctuate both during the time of
transactions and over time. Fluctuations in stock prices include both positive
and negative changes. The stock price of any product is affected by a host of
factors such as inflation, demand for that good in the market, government
policies, changes in budget, the worth of the organisation or company that
manufactures that particular good, etc. Among all the factors that cause
stock price fluctuations, the performance of the company whose shares are
traded matters a lot for the stock price as well as its volatility. Further, the
stock prices and volatility are related to systematic risk as well as
unsystematic risk in the stock market. The investor’s timing of buying and
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selling of shares is also influenced by calendar effects like the January effect,
Friday the 13th effect, and the first half of the month effect. The volatility of
the stock price is generally measured by the variability of the stock prices
over time, and the common measure of volatility is the standard deviation
of returns on the stocks.

The Indian stock market covers major sectors of the Indian economy,
including financial services, information technology, automobiles, energy,
metal, engineering, etc., and offers investment managers a vibrant exposure
to the Indian market. In India, there are two major stock exchanges: the
Bombay Stock Exchange (BSE) operating from Mumbai and the National
Stock Exchange of India (NSE) operating from New Delhi. The performance
of stocks in stock exchanges is measured by some indices. The two such
indices in India are the BSE30, commonly the SENSEX, of the BSE and
NIFTY50 of the NSE. The NIFTY50 stock index is widely considered the
benchmark and barometer for the capital markets in India.

In trading stocks in a day, the stock prices are bound to fluctuate
between the open price and the close price of the day due to various reasons.
It is also possible that the price of a stock experienced in a day is influenced
by its previous price, even a long past ago. If such is the case then today’s
price may have an effect on the price that comes into effect tomorrow or
later. Thus, there may be lagged effects of own price in the current stock
price. It is also possible that current stock price volatility is a reflection of
past fluctuations. Therefore, past stock prices and its volatility may be crucial
to forecasting future prices and their volatilities. Econometrically, based on
previous prices, the future price of a stock can be forecasted and also its
volatility can be forecasted. Among the many econometric models of
forecasting, autoregressive integrated moving average (ARIMA),
autoregressive conditional heteroscedasticity (ARCH) and generalised
autoregressive conditional heteroscedasticity (GARCH) models are
commonly used to forecast future stock prices and their volatilities. While
the ARCH and ARIMA models assume constant common variance, the
GARCH model takes into account the time-varying conditional variance of
stock prices. The conditional variance includes past variances in the
autoregressive term and the moving average term is the square of residual
from the autoregression of present variance on the past variance.

This paper analyses the impact of long-term and short-term stock price
volatility on the future stock price as well as on the variance of the forecasted
stock price. Specifically, this paper forecasts the future stock price using
datasets for long and short time periods and forecasts the variance from the
long-term and short-term stock price fluctuations. The empirical analysis is
based on the daily stock prices of TATA Steel Limited, a listed company in
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the NSE that manufactures metal steels. Tata Steel Limited, a Tata Group
subsidiary, is the second largest steel manufacturing company in India, after
Steel Authority of India Limited, a public sector undertaking in India, with
a global presence. The daily data on the stock prices of TATA Steel for the
period January 1, 2021 to April 13, 2024, from the National Stock Exchange
of India has been used. Empirically, this paper follows the Box-Jenkins
methodology for forecasting. The residuals of the ARIMA model are used
in the GARCH and EGARCH models for an understanding of the error
variance effect on the forecast of future volatility in stock prices.

LITERATURE REVIEW

In many analyses of stock market performance and stock prices, the ARIMA
model based on the Box-Jenkins method is used for forecasting. The ARIMA
method easily handles the nonstationary data, an important nature of stock
price series. However, the ARIMA model forecasts only the future stock
prices, but not the variance fluctuations. The ARIMA-GARCH method
forecasts the future values of stocks as well as the fluctuations in the variance
of stock prices.

Maity and Chatterjee (2012) apply the ARIMA of order (1,2,2) for the
period 1959 to 2011 for forecasting the GDP of India for the next ten years,
2012 to 2021. The forecasted GDP shows an increasing trend and its rate of
growth rates shows a decreasing trend. In the maximum likelihood
estimates, the coefficient of AR terms is negative and less than 1 and the
coefficients of MA are more than 1. The statistical validity of the model is
checked by modified Ljung-Box statistics. The estimates show a
parsimonious model with only one AR coefficient and one MA coefficient
with statistical significance. Therefore, they argue that the ARIMA model
is very effective not only in forecasting GDP but also in predicting the growth
rate of GDP in India.

Guha and Bandyopadhyay (2016) apply the ARIMA model to the
November 2003 to January 2014 nonstationary gold price data for forecasting
the gold price. They compare various statistics of fitness like mean absolute
error, mean absolute percentage error and root mean squared error of
ARIMA models of different orders. They conclude that the ARIMA (1, 1, 1)
forecast is the most accurate forecast for the data. The forecasted gold prices
show an increasing trend.

Ashik and Kannan (2017) apply the ARIMA model to the 2015 NSE
Nifty 50 closing price to forecast future stock prices. Among all the ARIMA
models, the ARIMA (0,1,1) forecast is the most precise forecast, with the
lowest BIC value and small mean absolute percentage error. The closing
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stock price of Nifty 50 shows a trend with slow decreasing fluctuations for
future trading days.

The assumption of common variance may not be satisfied commonly
in all the time series errors. Fluctuations in errors may produce volatility in
variance also. In many instances, the variance may be conditional and vary
over time. Under such conditions, the ARIMA modelling is inappropriate.
To overcome the common variance assumption, Engle (1982) proposes a
time-varying conditional variance model, the ARCH model. A generalisation
of the ARCH model, the GARCH model is proposed by Bollerslev (1986).
In the GARCH model, the periods of fluctuations are clustered and the
volatility of future stock prices is predicted. The GARCH model predicts
future variances on the basis of AR, MA, ARMA or ARIMA forecasts of the
variance of residuals.

There may also be an asymmetry in volatility due to large positive and
negative stock returns. The positive stock returns could arise because of
good news when there is calmness in the financial market and the negative
returns on stocks may arise because of bad news in a period of volatile
financial market. When there is an asymmetry in volatility and leverage
effect, the GJR-GARCH or TGARCH is used for forecasting the variance
(Glosten, Jagannathan and Runkle, 1993).

Ahmad et al. (2015) use a hybrid of linear ARIMA and GJR-GARCH to
model and forecast the Malaysian gold price. They compare the TARCH
forecasts with ARIMA forecasts for forecasting accuracy. The gold prices
are forecasted using the best fit ARIMA model whose order is (2,1,2). Then,
the residuals of the forecasted values are subjected to TGARCH analysis.
The ARCH-LM test is applied to the residuals for ARCH effects. Then, the
GJR-GARCH model of order (1,1) has been applied to forecast the gold price.
Based on the lowest AIC values, the ARIMA (2,1,2)-GJR-GARCH (1,1) hybrid
model is shown to perform better than the ARIMA model in forecasting
gold prices. Further, in terms of forecasting, the ARIMA-GJR-GARCH
produces lower in-sample and out-sample mean absolute percentage errors
(MAPE) compared to those of the ARIMA model.

Yaziz et al. (2016) use the 5-day-per-week frequency data on the daily
gold price for 40 days from November 26, 2005 to January 18, 2006to forecast
the gold price in Malaysia applying the ARIMA-GARCH hybrid model.
The ARIMA (1,1,1) has been fitted to the 35 observations, and the remaining
5 observations are used to check the accuracies of the forecasts. To the
residuals of these forecasts, GARCH has been fitted to forecast the variance
of the prices. The results show that the ARIMA (1,1,1)-GARCH (0,2), with
low mean square error and mean absolute error, is the most efficient model
which produces optimum results.
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Epaphra (2017) apply the GARCH and EGARCH models to the
exchange rate of the Tanzanian Shilling and UD$, in order to study the
volatility in exchange rate in Tanzanian. The data used is from January 4,
2009 to July 27, 2015. The variance is modelled using GARCH (1,1) and the
asymmetry and leverage effects are captured by EGARCH (1,1) models.
The negative coefficient of asymmetric volatility signifies less volatility with
respect to positive shocks relative to negative shocks. The GARCH (1,1)
model is a good fit as its root mean square error is low.

DATA AND METHODOLOGY

This paper uses the daily data of the listed TATA Steel Limited stock prices
from the National Stock Exchange of India. The time period considered is
from January 1, 2021 to April 3, 2024. The daily data on stock prices from
January 1, 2021 to December 31, 2021 is used for short-run variance
forecasting, and data from January 1, 2021 to December 31, 2023 is used for
long-run variance forecasting. The forecast accuracies are validated with
the data from January 1, 2024 to April 13, 2024, the next 69 days. The daily
stock price data of TATA Steel Limited is collected from the NSE website
that contains information on open, close, high, low, previous close, last stock
prices, volume weighted average price (VWAP), number of trades, total
traded quantity, total deliverable quantity, percentage of deliverable
quantity to traded quantity, turnover, etc.

EMPIRICAL METHODOLOGY

The VWAP i.e. volume weighted average price has been taken for fitting
the ARIMA model, since unlike open, close and last prices, VWAP takes
into account all the prices that existed throughout the day and the total
trades that have taken place for different prices.

Stock price no. of stocks bought at that price that day
VWAP

Total no. of stocks traded for that day
� �

�

The future stock prices are forecasted by the ARIMA model and the
GARCH is fitted on the residuals of the forecasts. First, to check for
stationarity, the data are plotted at levels and the Augmented Dickey-Fuller
(ADF) test is performed on the levels data. The time series is then differenced
and the stationarity of the differenced series is checked by applying the
ADF test yet again. After differencing, the series achieves stationarity. Based
on the Autocorrelation Function (ACF) and the Partial Autocorrelation
Function (PACF) plots of the differenced series, tentative orders of the
autoregressive and moving average terms are taken just to get a point to
begin from. Then, based on the significance of coefficients and lowest AIC
values, the best-fit model is identified. The variables in the resultant
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estimating equation are in differenced forms. Hence, the difference is
eliminated from the equation by using basic sum-difference arithmetic and
then forecasting is carried out. The Breusch-Godfrey LM and ARCH LM
tests are applied to the residuals of the forecasts to test for serial correlation
and ARCH effects respectively. Once the existence of ARCH and GARCH
effects is confirmed, the GARCH model is applied, thereby obtaining
forecasts of the varying conditional variance i.e. volatility. After checking
for the significance of coefficients, the EGARCH model is applied to the
residuals of the forecasts generated from the data set taken for a long time
period.

BOX-JENKINS METHODOLOGY

A time series data ordinarily does not reveal itself what process it follows–
AR or MA or ARMA or ARIMA. Even if the appropriate process is known,
the orders of the model, the p, r, q or d of the process are not easily identifiable.
Box-Jenkins (1976) addresses these issues. The B-J methodology proceeds
in four steps:

(i) identification,
(ii) estimation,
(iii) diagnostic checking, and
(iv)forecasting.
For, example, the ARIMA(p, d, q) could be fitted to the time series if

only the orders of the autoregressive process (p), integration (d), and moving
average process (q) are identified.

First, the unit root test has to be applied on the time series before and
after differencing to identify the order of integration, d. If the ADF test on
the undifferenced series reveals no unit root i.e. the series is stationary at
levels, then the order of integration is zero. If the ADF test shows that the
undifferenced series has a unit root and the differenced series has no unit
root i.e. the series is stationary at the difference, the order of integration is
one. The differencing process continues until the series achieves stationarity
i.e. till the unit root is eliminated from the time series. Thus, the order of
integration, d, is identified as that level of differencing at which the series is
stationarised by the elimination of the unit root.

The ARIMA is the fitted on the difference-stationarised time series for
determining the AR (p) or MA (q) in order to correct for any autocorrelation
present in the differenced series. The orders of AR and MA terms of the
series are identified by the autocorrelation function (ACF) and partial
autocorrelation (PACF) plots of the differenced series. These plots show
the correlation of the series with its own lags. In time series data, the partial
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correlation propagates to higher-order lags, and hence the correlation
between the lags also propagates. When the series is not fully differenced
i.e. if the PACF of the differenced series shows a cutoff and/or the lag-1
autocorrelation is positive, an AR (p) term may be added to the model
indicating the number of AR terms. On the other hand, if the series is over
differenced i.e. the ACF of the differenced series indicates a cutoff and/or
the lag-1 autocorrelation is negative, an MA (q) term indicating the lag at
the ACF cut-off may be added to the model. Once the model order (p, d, q) is
identified, the ARIMA model is fitted on the integrated series of order d,
autoregressive terms p, and moving average terms q, applying the ordinary
least squares regression.

In the ARIMA model of stock prices, the current price is expressed in
terms of a sum of past prices Yt–p’s and the sum of moving average terms or
past error terms ut–q’s. Each ut–q is obtained by regressing Yt–p on Yt–p–1 (p = 0,
1, 2…n).  As the correlogram and partial correlogram are the basis for
determining the order of the AR and MA terms, there may also exist many
other models that can fit better to the data. The best fit ARIMA model among
different orders of the autoregressive and moving average terms is generally
chosen on the basis of the significance of coefficients and on certain criteria
such as log-likelihood, Bayesian Information Criteria (BIC), Akaike
Information Criteria (AIC) or Schwarz-Bayesian Information Criteria (SBIC).

After choosing the best fit ARIMA model, the next step is to check if
there is more information available i.e. to check if there are any more
significant autocorrelations and partial autocorrelations at any lags present.
In essence, the diagnostics is to confirm white noise residuals. In correlogram
and partial correlogram analysis, the Box-Pierceq-statistic or Ljung-Box q-
statistic tests the joint hypothesis that all the autocorrelations up to certain
lags are simultaneously equal to zero.

The best fit ARIMA model obtained through the foregoing
identification, estimation and diagnostic checking steps can now be used
for forecasting future stock prices. The estimating equation consists of Yt–p
autoregressive and ut–q moving average terms based on the order. Thus, the
ARIMA model is a self-determining model as there are only current and
past values of the data series that depend on the own autoregression of the
variable and the moving average of the errors, and no exogenous variables
are there in the model.

ARIMA MODEL

Generally, the autoregressive model AR(p) is specified as:

Yt = a + �1Yt–1 + ... + �p Yt–p + ut (1)
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where Yt is a finite linear sum of its past values, ut is the random shock or
white noise term identically and independently distributed, ut ~ NIID (0,
�2), �i (i = 1, ..., p) are the parameters of the model, and Yt is stationary.

The moving average model MA(q) is specified as:
yt = ut – �1ut–1 – �2ut–2 + ut–q (2)

where Yt is a linear weighted sum of the current and past values of the
random shock series, and the lj ( j = 1, ..., q) are the moving average
parameters. When the series is nonstationary at level, the series Yt is reduced
to stationarity by differencing:

�Yt = Yt – Yt–1 (3)
Then, the AR (1) model for the differenced series is specified as:

�Yt – �1�Yt–1 – ... – �p�Yt–p = ut (4)

The combination of AR and MA models along with an appropriate
degree of differencing (integration), the ARIMA (p, d, q) model is specified
as:

Yt = a + �1Yt–1 + �2Yt–2 + ... + �pYt–p + ut – �1ut–1 – �2ut–2 – ... – �qut–q (5)

or
�Yt – �1�Yt–1 – ... – �p�Yt–p = ut – �1ut–1 – �2ut–2 – ... – �qut–q (6)

Using the backward shift operator B, a compact ARIMA model is
specified as:

Yt–1 – Yt–2 = BYt – B 2Yt (7)

� Yt–1 = B(1 – B)Yt ; �Yt–2 = B 2(1 – B)Yt ; (1 – B)Yt = Yt – Yt–1 (8)
where BdYt = Yt–d .

The general ARIMA (p, d, q) model, with d degree of differencing, is
expressed as:
(1 – �1B – �2B 2 – �3B

 3 – ... – �pB p)(1 – B)Yt = (1 – �1B – �2B 2 – ... – �qB
 q)ut (9)

The ARIMA model can be estimated by the OLS method by regressing
the differenced series on the autoregressive and moving average terms.
However, when the data is fitted with the model, errors are bound to arise
showing the deviation of the fitted values from the actuals. The estimated
residuals are calculated as:

ˆ ˆt t tY y� � � (10)

Then, the GARCH model is applied to estimate the error variance i.e.
volatility in residuals. The common variance of errors is tested by applying
the ARCH-LM test.
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GARCH MODEL

When the errors of the time series exhibit time-varying errors, then the OLS
method cannot be applied. Engle’s (1982) ARCH modelling is applied when
the time series exhibits time-varying conditional variance. Bollerslev’s (1986)
GARCH modelling is applied when the series exhibits volatility clustering
to predict future volatility. The GARCH model incorporates the variance
and variance forecast of the previous periods in the forecast of future
variance. In the standard GARCH model, the past volatility and variance
are symmetric.

The basic structure of the symmetric and normal GARCH (p, q) model
is specified as (Brooks, 2008):

Yt = �0 + �1Yt–1 + ... + �qYt–q + ut (11)
where the error term ut, conditional on information of period t–1, is
distributed as:

ut ~ [N(0, (�0 + �1u
2
t–1 + ��2

t–1)] (12)
The error variance follows the ARCH (1) process. The error variance

depends on the squared error as well as its conditional variance in the
previous period. As the error variance is not directly observed, Engle (1982)
suggests the conditional variance for GARCH modelling:

ut = vt�t
2 (13)

�t
2 = � + (�1u

 2
t–1 + �2u

 2
t–2 + ...) + (�1�

2
t–1 + �2�

2
t–2 + ...) (14)

�2
t = ��+ ��iu

 2
t–q + ��j�

2
t–p (15)

where vt ~ N (0, 1) and ��= �0 (1 – �1). The GARCH term is the conditional
variance s2, where order p represents the forecast variance of the last period.
The ARCH term u2 represents the previous period volatility, the q lags of
the squared residual from the mean equation.

EGARCH MODEL

The disadvantage of the GARCH model is that it assumes the parameters to
be non-negative and symmetry in residuals. Nelson and Cao (1992) propose
an Exponential Conditional Heteroscedasticity (EGARCH) model that takes
into account the leverage effect i.e. asymmetry in the residuals induced by
big positive and negative changes. The EGARCH model is specified as:

log �t
2 = ��+ �q

k=1 �k g(zt–k) + �p
k=1 �k log �2

t–k (16)

g(zt ) = �zt + �[|zt| – E|zt|] (17)

2

t

t

u
Zt �

� (18)
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If zt ~ N(0, 1), then  
2

tE z �
�

(19)

Inserting equations (18) and (19) into equation (17) gives:

2 2

2
( ) tt

t

t t

us
g z

� �
� � � � �� ��� �� �� �

(20)

Substituting one period-lagged form of equation (20) in equation (16)
yields:

12 2 1
1 2 2

1 1

2
log ln tt

t t

t t

uu ��
�

� �

� �
� � �� � � � � � � �� ��� �� �� �

(21)

where �2
t = �0 + �1u

 2
t–1 + �1�

2
t–1 + �u 2

t–1It–1 and I being the information asymmetry.
Thus, the EGARCH model has the advantage of less restrictiveness,

since �t
2 as modelled is always positive even with negative parameter values.

The persistence of conditional volatility is measured by the term � and the
asymmetry or leverage effect is measured by q. For large �, the volatility
takes a long time to decay. When � = 0, the model is symmetric, � < 0 implies
less volatility with positive shocks than with negative shocks, and � > 0
implies more volatility due to good news than bad news. The � measures
the symmetric effect or the GARCH effect of the model. Equation (21) is an
EGARCH model of the first order, where the conditional variance �t

2 is
asymmetric with respect to ut–k, the lagged disturbances. The EGARCH
model uses the logarithmic value of the conditional variance.

EMPIRICAL ANALYSIS

The stock price of TATA Steel Limited in NSE has experienced fluctuations
over the data period as revealed by the VWAP data at levels showing no
mean reversal phenomenon. The stationarity of the series is checked by
plotting VWAP data at first difference which exhibits the phenomenon of
mean reversal i.e. the graphs are frequently cutting the mean line. The data
has become stationary after differencing it once.

Towards the fitting of the ARIMA model for the data, identification
of the orders (p,d,q) of autoregressive, integration or differencing and
moving average terms are to be determined by performing the standard
tests on the data series. The Augmented Dickey-Fuller test for stationarity
is performed both at the levels and on the first difference. The ADF test is
performed on the data by estimating the regression of the form:

�Yt = �0 + �t + �Yt–1 + ��i�Yt–k + ut        k = 1, ..., T (22)
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where ut is a pure white noise error term and � is the first difference. The
Akaike Information Criteria (AIC) is used to determine the number of lagged
difference terms to be included in the model to avoid serial correlation in
the error term. In ADF, the test is whether � = 0 i.e. if � = 1 for the presence
of unit root in the time series. Table 1 presents the ADF test results showing
that the series is nonstationarity at levels. Hence, the series at levels has a
unit root, which is also revealed by the time series plot of the differenced
series. At first difference, the series has become stationary, as the t-statistics
> 0.05 p-value. Thus, the data series is integrated of order 1 i.e. I (1).

Table 1: ADF Stationarity Test

At level At first difference

t-statistic Probability t-statistic Probability

–2.053651 0.2639 –35.21691 0.0000

The orders of AR and MA terms are determined by checking the ACF
and PACF of the data series. The ACF and PACF correlograms of the
differenced short-period and long-period data series, as revealed in Figures
1 and 2, show a significant autocorrelation at the first lag in both ACF and
PACF.

Figure 1: Short-period Autocorrelations of First Differenced Series

Figure 2: Long-period Autocorrelations of First Differenced Series
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Therefore, based on the correlogram and unit root test, the (p, d, q) order
of the model has to be (1, 1, 1), due to the presence of autocorrelation at the
first lag itself. However, the correlogram can indicate only the orders and
does not identify the appropriate order for the ARIMA model. Hence, the
AIC has to be applied for the identification of the most appropriate order to
be chosen for model fitting. The best-fit model is the one with the lowest
AIC value. Table 2 presents the AIC and SIC values for various orders of
both short-period and long-period time series. Based on the significance
and the lowest AIC, the orders (1, 1, 2) and (3, 1, 3) are identified as the best-
fit models for short-run and long-run data series respectively.

Table 2: AIC for Orders (p, d, q)

Order (p, d, q) Short-period Long-period

AIC SIC AIC SIC

(1,1,1) 6.9628 6.9883 6.7672 6.7796
(1,1,2) 6.9571 6.9911 6.7684 6.7849
(1,1,3) 6.9631 7.0055 6.7699 6.7907
(2,1,1) 6.9587 6.9927 6.7683 6.7848
(2,1,2) 6.9627 7.0051 6.7684 6.7891
(2,1,3) 6.9667 7.0176 6.7700 6.7949
(3,1,1) – – 6.7685 6.7892
(3,1,2) – – 6.7698 6.7946
(3,1,3) – – 6.7629 6.7920

The OLS regression estimates of the best fit ARIMA model for the first
differenced series on the autoregressive and moving average terms are
presented in Table 3.

Table 3: OLS Estimates of the Best Fit ARIMA Model

Data period Parameter Coefficient Standard error t-statistics p-value

Short run AR(1) 0.877* 0.0721 12.1642 0.000
MA(1) –0.733* 0.0814 –9.0044 0.000
MA(2) –0.187* 0.0451 –4.1503 0.000
Constant 1.016* 0.2362 4.3023 0.000

Long run AR(1) –1.715* 0.1127 –15.222 0.000
AR(2) –1.302* 0.1658 –7.8511 0.000
AR(3) –0.220** 0.1093 –2.0143 0.044
MA(1) 1.948* 0.1037 18.7918 0.000
MA(2) 1.668* 0.1539 10.835 0.000
MA(3) 0.454* 0.1025 4.4261 0.000
Constant 0.247 0.2418 1.0203 0.308

Note: *significant at 1, 5% levels
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Thus, the short-period model is:

�yt = 1.016 + 0.877�yt–1 – 0.733ut–1 – 0.187ut–2 (23)

The long-period model is:

�yt = 0.247 – 1.715�yt–1 – 1.302�yt–2 – 0.220�yt–3 + 1.948ut–1

+ 1.668ut–2 + 0.454ut–3 (24)

Since the regression is on the differenced series, the resultant forecasted
prices would be in differenced forms as well. Hence, using ordinary
sum-difference arithmetic, the differenced terms from the equations are
eliminated to get estimated equations in terms of actual values of prices.
Then, the stock prices are forecasted in the base form. Thus, from equation
(23), the forecasted stock price at time t is:

yt = 1.016 + 0.123yt–1 + 0.877yt–2 – 0.733ut–1 – 0.187ut–2 (25)

From equation (24), the forecasted stock price at time t is:

yt = 0.247 – 715yt–1 – 0.414yt–2 – 1.082yt–3 + 1.948ut–1

+ 1.668ut–2 + 0.454ut–3 (26)

Therefore, based on short data and long data, equations (25) and (26)
respectively are used in the forecasting of the TATA Steel stock prices.

Before forecasting the stock prices, following the Box-Jenkins
methodology, the residuals of the best-fit models are tested if they are white
noise terms. Figures 3 and 4 show the correlograms of residuals generated
by the short-period and long-period models respectively. As can be seen
from the correlograms, no significant spikes can be noticed in both ACF
and PACF, implying that the residual of the identified ARIMA models is
white noise, and no further information is available. Hence, there is no need
to consider AR (p) and MA (q) any further.

Using the identified models for forecasting, ARIMA models have been
fitted for the long and short periods, and TATA Steel stock prices have been
predicted for the next four months of the NSE of India. The plots of these
static forecasts are compared with the plot of actuals for the period January
1, 2023 to April 30, 2024 to check the forecasting accuracy. Remarkably, the
forecasted values closely follow the actual stock prices in both cases. The
low mean absolute percentage error and root mean squared error also
validate the fit of the models.

Table 4 presents the ARCH-LM test results for the ARCH effects in the
ARIMA residuals. The null hypothesis of no ARCH-GARCH effects is
rejected, as the calculated ARCH-LM test probabilities are less than the
significance level. Hence, the variances can be forecasted by fitting the
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Figure 3: Correlogram of Residuals of Short-period Data

GARCH model on the residuals of the ARIMA forecasts. Therefore, GARCH
(1,1) has been fitted to the forecasts of the resultant residuals of ARIMA
forecasting. Table 5 presents the GARCH model estimates. The estimates of
the GARCH model provide the effects of both past variances of the
forecasted residuals and squares of residuals of those variances on current
variances.

Table 4: Heteroscedasticity Test for ARIMA Residuals

Short-period data F-statistic 4.094 Prob.F(1,492) 0.0436
Observed R2 4.076 Prob.Chi square(1) 0.0435

Long-period data F-statistic 14.155 Prob.F(1,1230) 0.0002
Observed R2 14.017 Prob.Chi square(1) 0.0002
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Table 5: GARCH Estimates on ARIMA Residuals

Variable Coefficient Standard error p-value

Residual (–1)2 –0.1036 0.223803 0.6436

GARCH (–1) 0.5856 1.063476 0.5819

Constant 108.7559 238.8774 0.6489

Thus, the estimated variance forecasted by the GARCH model is:

�2
t  = 108.7559 – 0.1036u 2

t–1 + 0.5856�2
t–1 (27)

Since the forecast of variances by GARCH fitting on short-time data
produces highly insignificant results, the stock price variance is neither
effected by its past value nor by the residuals of the variance. As none of
the residuals has any effect on the forecast of variances, the short-period
effect is not observed on the stock price volatility. Therefore, the variances
are forecasted again with long-period data and this time fitting the
EGARCH model for the time series. The estimated EGARCH results
presented in Table 6 show that three out of four coefficients are highly
significant.

Figure 4: Correlogram of Residuals of Long-period Data
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Table 6: Estimated GARCH Model on ARIMA Residuals

Parameter Coefficient Standard error p-value

� 1.4448 0.0097 0.000
� –0.6194 0.0176 0.000
� –0.1258 0.0463 0.006
� 0.8237 0.0006 0.000

Therefore, the estimated variance forecasting of the EGARCH model
is:

12 2 1
1 2 2

1 1

2
log 1.444 0.619ln 0.126 0.824 tt

t t

t t

uu ��
�

� �

� �
� � � � � � �� ��� �� �� �

(28)

The estimated coefficient �, the persistence of conditional volatility, is
the least in terms of magnitude out of all the parameters and is highly
significant. Hence, the volatility decays at a very short time in the market.
Since �, the asymmetry parameter, is significantly negative, there is a
leverage effect implying that positive shocks generate less volatility than
negative shocks. The significant positive coefficient �, measuring the GARCH
effect, implies there is a GARCH effect i.e. the present variance is effected
by its past values.

Figure 5 presents the plot of actual vs forecasted variance by fitting the
EGARCH model on stock prices of TATA Steel Limited for the 69 days,
from January 1 to April 13, 2024. The plot shows a remarkably close fit of
the EGARCH model to the actuals. Especially, the high volatility in the first
half of the period gradually decays in the latter half of the time period
considered, as the EGARCH model explains. It is to be noted that the actual
variance is calculated by taking standard deviations of the actual stock prices
for the 69 days and then squaring them to variances, whereas the forecasted
variance is generated as a result of the heteroscedasticity model with error
variance that includes certain factors like leverage effects, asymmetry, etc.
Therefore, in Figure 5 the plot of calculated actual variance shows slightly
higher volatility than the plot of the forecasted variance.

It can be observed that the stock volatility is caused by negative shocks
as shown by the � coefficient. The high volatility in stock prices in the month
of January is generally attributed to the phenomenon of the “January effect”
in the stock market (Thaler, 1987). This happens as investors buy more stocks
during the month of December owing to the fall in stock prices that happens
during the end of a year and sell them during the last week of January of
the next year when stock prices rebound. Also, generally, the total trade
volume of stock in December is relatively high in the month of January,
leading to relatively more volatility in January. The volatility in stock prices
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that is present during the month of January will not last long as it will decay
in the following days, as the coefficient of l parameter reveals. The forecasting
performance of the EGARCH model is evaluated by the root mean square,
14.373 for the fitted EGARCH model.

While fitting the ARIMA model for short-period data, the price on the
present working day is dependent on prices in the preceding periods along
with the errors made in two preceding periods, and for long-period data,
the price on the present working day is dependent on longer preceding
periods and the errors made in those periods. The parameters in the fitted
ARIMA model to short data are all significant, hence the plot for the
forecasted values almost overlapped the actual stock prices. In the case of
long-period data, all the parameters other than the intercept and the third
autoregressive term are highly significant, thus the plot for the forecasted
series closely follows the plot of the actual series of stock prices.

However, the residual plots of both time period models show volatility
clustering as a result of which the GARCH model has been used to study
the variances in the prices in the short data. As the coefficients of the fitted
GARCH model are highly insignificant, the ARCH and GARCH terms are
quite ineffective in studying the fluctuations in conditional variance. The
GARCH model also assumes symmetry in residuals and volatility. In order
to capture any possible asymmetry in the stock prices, the EGARCH model
is estimated to understand the variance fluctuations for relatively long-
period data The parameters that signify symmetry, persistence of volatility
and leverage effect are significant, implying that the volatility in the stock
prices will die out within a very short span of time. The plot of forecasted
variance shows that the volatility in the TATA Steel stock prices that is
observed in the month of January does not extend to February. Hence, the
volatility in the TATA Steel stock prices is not quite persistent. Thus, the

Figure 5: Performance of Actual vs Forecasted Volatility of Stock Prices
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forecasted stock price variance on the basis of a long-period price series is
more reliant than the one forecasted on a short-period price series.

CONCLUSION

Generally, an economy is said to be healthy when the stock market is stable.
The stock market performance is also considered a barometer of the health
of the manufacturing and financial sectors, the important pillars of economic
development. An increasing trend in stock market indices implies the growth
of the economy and a decreasing trend indicates poor performance. In any
stock market, the stock prices are generally volatile and fluctuate over time
which are measured by various indices. This paper analyses the effects of
long-period and short-period stock price variations on stock prices and using
the volatility in residuals i.e. error variance, the future volatility in stock
prices is forecasted. Empirically, based on the stock prices of TATA Steel
Limited in the NSE between January 1, 2021 and April 31, 2024, the short-
period and long-period stock prices are used to predict the future stock
price and future volatility. First, the ARIMA model has been fitted to forecast
the stock prices, and to the resultant residuals, GARCH and EGARCH
models have been applied to examine the effects of short-period and long-
period price fluctuations on the forecasts of future price variations
respectively. The EGARCH fitting shows that the long-period fluctuations
have a significant effect on the future stock price volatility relative to the
GARCH fitting. The predictability of the EGARCH model has been
compared with the actual stock price variations in the next 69 days, from
January 1 to April 13, 2024. The econometric forecasts show that the long-
period stock price volatility is more reliant than the short-period volatility
in forecasting future stock price volatility as well as the stock prices.
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